If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6v^2+48v+90=0
a = 6; b = 48; c = +90;
Δ = b2-4ac
Δ = 482-4·6·90
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12}{2*6}=\frac{-60}{12} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12}{2*6}=\frac{-36}{12} =-3 $
| -7x-3=20 | | -5x-2(9-9x)=9 | | 6.1+w/5=-6.4 | | 4w=w+3/4 | | 7x+14=3x=30 | | 120=5n+5 | | -33-9w=6+-3(-7+8w) | | 96+12x=15x | | 3c-7(-c+4)=2(c-5)+6c | | 5+3(q-4)=2(q+1( | | 13-a29;a=-30 | | 5.3g+7=2.3g+22 | | -3x+4=-(2x+8) | | 0=-49k^2+7k+20 | | 6u^2+2u-4=0 | | 20-2x=56-5x | | 0=x^2-3.4x+1.2 | | 11x-6x+168=11x+114 | | -5b=10/3 | | 0=49k^2+7k+20 | | 9+2r=-2(1+r)-1 | | 4x=5/9=3 | | 11x-6x+168=11x+144 | | 5x+23x-3=7(4x+6) | | 9w+3=3(+) | | x+-13=-40 | | f•-9+4=2 | | 2+2h÷3=6 | | -2(x-1/2)=-2 | | ,12k-2=-38 | | 3x+29=11 | | 12x^2-60x+36=0 |